

تغذیه درمانی در کبد چرب

دکتر مهدیه گل زرند استادیار مرکز تحقیقات تغذیه در بیماری های غدد درون ریز دانشگاه علوم پزشکی شهیدبهشتی

Definitions of NAFLD, NAFL and NASH NAFLD • Excessive hepatic fat accumulation with IR • Steatosis in >5% of hepatocytes • Exclusion of secondary causes and AFLD NAFL HCC NASH • Pure steatosis • Steatosis and mild lobular inflammation Early Fibrotic Cirrhotic F0/F1 fibrosis \geq F2 to \geq F3 fibrosis F4 fibrosis Definitive diagnosis of NASH requires a liver biopsy

Spectrum of NAFLD and concurrent disease

Sub-classification of NAFLD Most common concurrent diseases

NAFL

- Pure steatosis
- Steatosis and mild lobular inflammation

NASH

- Early NASH (no or mild fibrosis)
- Fibrotic NASH (significant/advanced fibrosis)
- NASH cirrhosis

HCC

AFLD[†] Drug-induced fatty liver disease HCV-associated fatty liver disease

Others

- Haemochromatosis
- Autoimmune hepatitis
- Coeliac disease
- Wilson disease
- A/hypo-betalipoproteinaemia lipoatrophy
- Hypopituitarism, hypothyroidism
- Starvation, parenteral nutrition
- Inborn errors of metabolism
 - Wolman disease (lysosomal acid lipase deficiency)

► NAFLD _____ 32.4% of general population

► NAFLD → 7% of normal-weight

Prevalence increased from 25.5% in or before 2005 to 37.8% (32.4-43.3) in 2016 or later.

▶ NAFLD was significantly higher in men than in women (39.7% vs 25.6%).

- Increase of more than 3 fold in liver trasplant patients due to NASH in the last 10 years

Pathogenesis: lifestyle and genes

- Unhealthy lifestyles including:
- 1- High calorie intake
- 2- Excess (saturated) fat
- 3- High fructose intake
- 4- Sedentary behaviour

Unhealthy lifestyles **——** development and progression of NAFLD

► Genes:

- 1- PNPLA3 I148M
- 2- TM6SF2 E167K

► Associated with risk of NASH

Genotyping is not recommended routinely

Other risk factors

- Obesity especially abdominal obesity
- ► Type 2 diabetes
- ► Hypertension
- ► Hyperlipidemia
- Metabolic syndrome
- Older people > 50 years
- Smoking

Diagnosis: protocol for evaluation of NAFLD

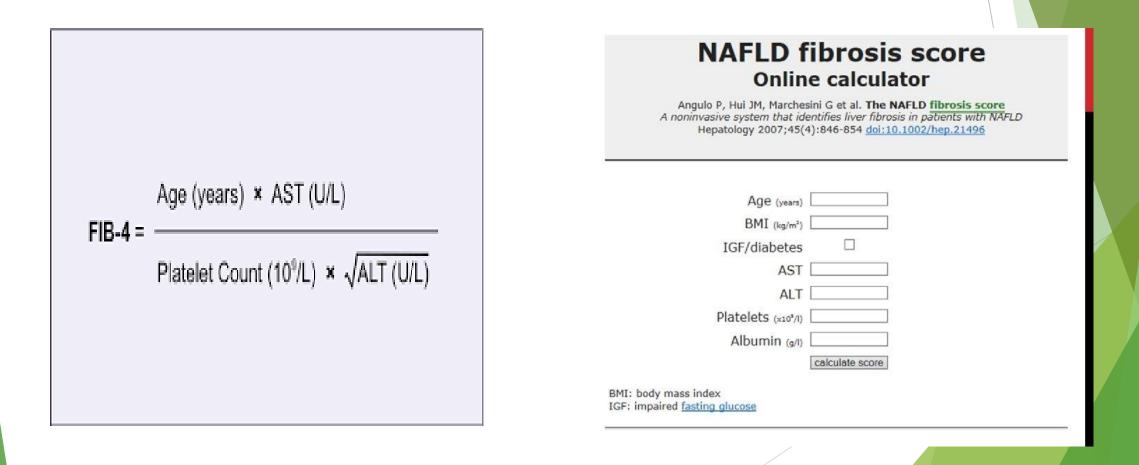
- Usually asymptomatic; majority discovered by chance
- ► Fatigue frequently present
- Right upper quadrant discomfort
- Abnormal LFTs

Patients with IR and/or metabolic risk factors (i.e. obesity or MetS) should undergo procedures for the diagnosis of NAFLD

Level	Variable
Initial evaluation	 Alcohol intake: <20 g/day (women), <30 g/day (men) Personal and family history of diabetes, hypertension and CVD BMI, waist circumference, change in body weight Hepatitis B/hepatitis C virus infection History of steatosis-associated drugs Liver enzymes (ALT, AST, GGT) Fasting blood glucose, HbA1c, OGTT, (fasting insulin [HOMA-IR]) Complete blood count Serum total and HDL cholesterol, triacylglycerol, uric acid Ultrasonography (if suspected for raised liver enzymes)
Extended* evaluation	 Ferritin and transferrin saturation Tests for coeliac and thyroid diseases, polycystic ovary syndrome Tests for rare liver diseases (Wilson, autoimmune disease, AATD)

ALT / AST not sensitive tool for diagnosis NAFLD/NASH: Ultrasound essential

Ultrasound:


- Identify steatosis
- Cannot distinguish type of NAFLD

To establish the degree of inflammation and fibrosis non-invasive tools is

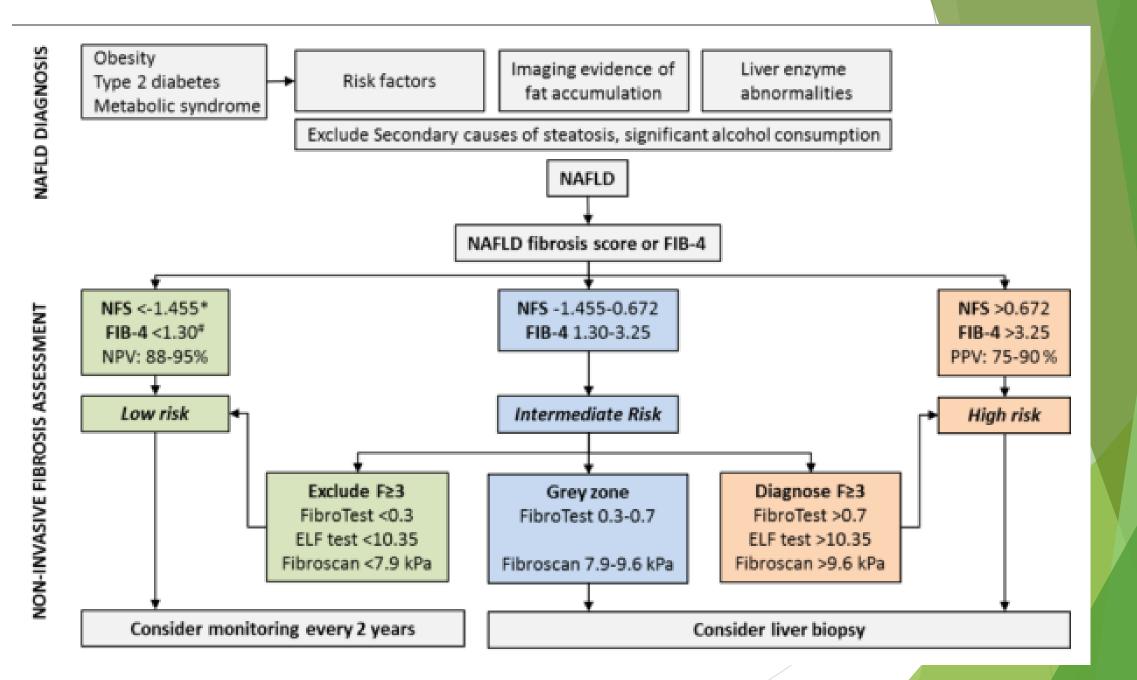
warranted

► Non-invasive tools:

1- Hepatic fibrosis markers: Fibrosis Score (NFS) and Fibrosis 4 (FIB-4)

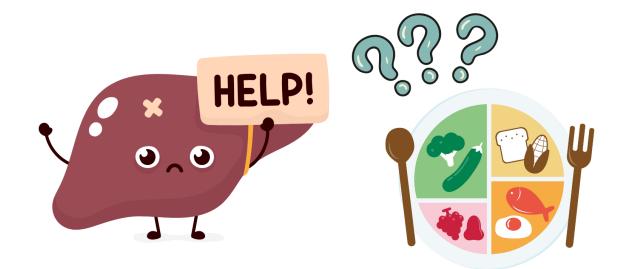
2- Imaging including: Fibroscan

Advantage:


High performance for fibrosis and cirrhosis

► Limitations:

- Morbid obesity
- Ascites
- Extra-hepatic cholestasis
- Pregnancy


Liver Biopsy: Gold Standard for fibrosis

- Sampling errors
- ► Expensive
- Need hospitalization
- Dependent of observers interpretation

https://www.bsg.org.uk/web-education-articles-list/nafld-diagnosis-assessment-and-management/

Treatment: diet and lifestyle changes

Aims:

- Improvement of liver histology including regression of fibrosis or resolution of NASH
- Changes in quantitative parameters assessing liver fat content
- Changes in quantitative assessment of liver fibrosis
- Changes in transaminases (ALT/AST) as a surrogate for hepatic inflammation
- Changes in metabolic parameters

Recommendations

Healthy diet and habitual physical activity

► No pharmacotherapy

	EASL-EASD-EASO 20168	AASLD 2018°	ESPEN 2019 ¹⁰	APASL 2020 ¹¹
Energy restriction	500-1000 kcal energy deficit/ day to induce a weight loss of 500-1000 g/week	Decrease caloric intake by at least 30% or by approximately 750-1000 kcal/day	Hypocaloric diet	Hypocaloric diet (500-1000 kcal deficit/ day).
Weight loss	7%-10% total weight loss target	≥5% for steatosis improvement, ≥7% for histological improvement	7%-10% in overweight/obese patients >10% to improve fibrosis	7%-10% weight loss, gradual weight loss (up to 1 kg/week)
Macronutrient composition	 Low-to-moderate fat and moderate-to-high carbohydrate intake Low-carbohydrate ketogenic diets or high-protein 	NS	 Irrespective of macronutrient composition Mediterranean diet to improve steatosis and insulin sensitivity 	 No strong evidence to support a particular dietary approach. Plans should encourage low- carbohydrate, low-fat and Mediterranean- type diets
Fructose	Avoid fructose-containing beverages and foods	NS	NS	Exclusion of beverages high in added fructose
Alcohol	 Strictly keep alcohol below the risk threshold (30 g, men; 20 g, women) Moderate alcohol intake (namely, wine) below the risk threshold is associated with lower prevalence of NAFLD, NASH and even lower fibrosis 	 Should not consume heavy amounts of alcohol. Insufficient data on nonheavy consumption of alcohol 	Abstain	 The "cut-off" values of alcohol intake in MAFLD should be set lower than the apparent "threshold levels". Patients with MAFLD should be advised to avoid alcohol and if that is not possible, to consume the lowest amount possible.
Coffee	No liver-related limitations.	NS	More likely to benefit health than harm	NS
Physical activity	 150-200 min/week of moderate intensity aerobic physical activities in 3-5 sessions are generally preferred (brisk walking, stationery cycling) Resistance training is also effective and promotes musculoskeletal fitness, with effects on metabolic risk factors High rates of inactivity-promoting fatigue and daytime sleepiness reduce compliance with exercise 	 Physical activity more than 150 minutes/ week Moderate intensity exercise 	Increase physical activity	 Aerobic exercise and resistance training effectively should be tailored based on patient preferences to ensure long-term adherence. Resistance exercise may be more feasible than aerobic exercise for patients with poor fitness.

Results of a meta-analysis:

► WL \ge 5% → hepatic steatosis

► WL \ge 7% → improvement in the NAFLD Activity Score (NAS)

► Results of a recent study: WL > 10%

► 45% regression of fibrosis

▶ 90% resolution of steatohepatitis

▶ 100% improvements in NAS

Weight loss

- **EASL 2016:** 7%-10% total WL
- ► AASLD 2018: \geq 5% for steatosis improvement, \geq 7% for histological improvement
- **ESPEN 2019:** 7%-10% in overweight/obese patients, >10% to improve fibrosis
- ► APASL 2020: 7%-10% total WL

Weight reduction not exceed approximately 1.6 kg/week

- Every 1 kg of weight lost was associated with:
- ► A 0.83-unit reduction in ALT
- ► A 0.56-unit reduction in AST
- ► A 0.77% point in steatosis assessed by radiology or histology
- Limited evidence of a dose-response relationship with fibrosis or NAFLD activity score.

The effect of the magnitude of weight loss on non-alcoholic fatty liver disease: A systematic review and meta-analysis. Metabolism. 2021 Feb;115:154455.

Energy restriction

EASL 2016: 500-1000 kcal/day

► AASLD 2018: 750-1000 kcal/day

- **ESPEN 2019:** Hypocaloric diet
- ► APASL 2020: 500-1000 kcal/day

Macronutrient composition

EASL 2016: low-carbohydrate ketogenic diets or high-protein

► AASLD 2018: NS

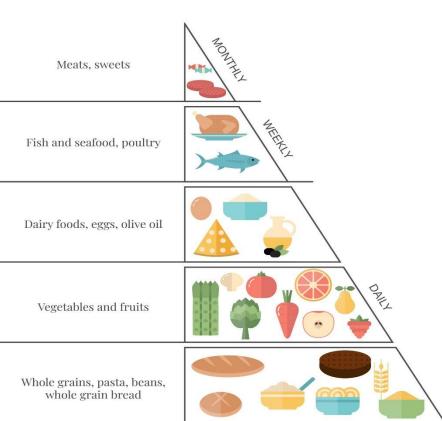
ESPEN 2019: Mediterranean diet

► APASL 2020: low-carbohydrate, low-fat and Mediterranean-type diets

- Low carbohydrate diet (LCD): reduction in intrahepatic lipid content
- ► Hypocaloric LCD is more effective than hypocaloric LFD
- ► VLCD contains 5-10% carbohydrate: very effective in short-term

▶ Intermittent calorie restriction: reduced LFTs but long-term feasibility and

safety is controversial


High protein diet

decrease intrahepatic lipid content

- animal protein or plant protein???
- Animal proteins increase Met, Hcy and Cys
- increase BCAAs Plant proteins

► Controversy ???

Reduces hepatosteatosis and liver stiffness measurement (LSM)

Reduced risk of HCC or liver-related death

- ► A systematic review and meta-analysis of 13 interventions reduced:
- ✓ ALT (-6.59)
- ✓ Fatty Liver Index (FLI) (-15.6)
- \checkmark Liver stiffness (-0.75)
- \checkmark No effect on AST and hepatic steatosis

The effectiveness and acceptability of Mediterranean diet and calorie restriction in non-alcoholic fatty liver disease (NAFLD): A systematic review and metaanalysis. Clin Nutr. 2022 Sep;41(9):1913-1931.

Processed food and Fructose

- EASL 2016: Avoid processed foods and fructose-containing beverage and foods
- AASLD 2018: NS
- **ESPEN 2019:** NS
- ► APASL 2020: Exclusion of processed foods and beverages high in added fructose
- Based on a meta-analysis, total fructose-containing sugars increased

intrahepatocellular lipid (IHCL) by %10

Important Food Sources of Fructose-Containing Sugars and Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis of Controlled Trials. Nutrients. 2022 Jul 12;14(14):2846. ► SSB → higher NAFLD prevalence, NASH presence and fibrosis

► **Fructose-** but not **glucose-SSB** have been associated with:

- ▶ increased *de novo* lipogenesis
- ► dyslipidemia
- visceral adiposity
- impaired insulin sensitivity
- SSBs providing 27% to 30% excess energy led to a moderate increased IHCL by 10% and ALT by 11%

Important Food Sources of Fructose-Containing Sugars and Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis of Controlled Trials. Nutrients. 2022 Jul 12;14(14):2846.

Alcohol

- **EASL 2016:** <30 g for men and 20 g for women
- ► AASLD 2018: Not consume heavy amounts of alcohol
- **ESPEN 2019:** Abstain
- ► APASL 2020: Lower than "threshold levels" in MAFLD should be set

Coffee

EASL 2016: No limitations

► AASLD 2018: NS

ESPEN 2019: Benefit health more than harm

► APASL 2020: NS

Results of a meta-analysis of 11 epidemiological studies indicated regular coffee

consumption leads to:

- ✓ A 23% lower risk of NAFLD incident
- ✓ A 33% lower risk of liver fibrosis in NAFLD patients

Although there are some controversy

The effect of coffee consumption on the non-alcoholic fatty liver disease and liver fibrosis: A meta-analysis of 11 epidemiological studies. Ann Hepatol. 2021 Jan-Feb;20:100254.

Exercise

EASL 2016: 150-200 min/wk of moderate intensity aerobic PA (3-5 sessions)

and resistance training is also effective

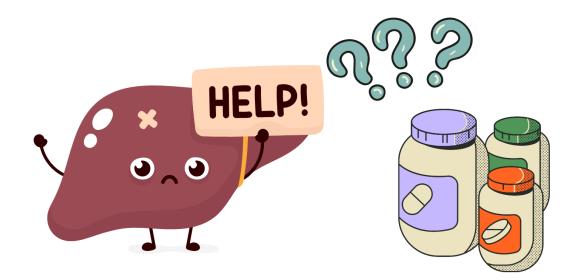
- ► AASLD 2018: > 150 min/wk moderate intensity PA
- **ESPEN 2019:** Increase physical activity
- ► APASL 2020: Aerobic exercise and resistance training

▶ Result of a meta-analysis including 24 studies (18 RCTs and six non-RCTs,

encompassing 1014 patients with NAFLD) indicated:

✓ Moderate-intensity continuous training → decrease of liver enzymes and

liver fat


✓ High-intensity interval training → decrease of liver fat

Does aerobic exercise reduce NASH and liver fibrosis in patients with non-alcoholic fatty liver disease? A systematic literature review and meta-analysis. Front Endocrinol (Lausanne). 2022 Nov 3;13:1032164.

- Meta-analysis on 10 studies (316 individuals who had NAFLD) has shown:
- Exercise without significant weight loss significantly reduced the intrahepatic lipid (IHL) content and ALT, AST.
- Aerobic exercise alone significantly reduced IHL, ALT, and AST.
- Resistance training alone significantly reduced TC and TG.
- ► A combination of both exercise types significantly reduced IHL.

Positive Effects of Exercise Intervention without Weight Loss and Dietary Changes in NAFLD-Related Clinical Parameters: A Systematic Review and Meta-Analysis. Nutrients. 2021 Sep 8;13(9):3135.

Treatment: pharmacotherapy

Treatment should be indicated in:

Progressive NASH

Early-stage NASH with risk of fibrosis progression*

► Active NASH with high necroinflammatory activity

No drugs are approved for NASH No specific therapy can be recommended Any drug treatment is off label

Vitamin E (800 IU/d)

Improve steatosis, inflammation and ballooning

- (histological improvement ≥ 2 point reduction in NAS)
- Resolution of NASH
- Concerns about long-term safety exist

* incidence of prostate cancer and

* hemorrhagic stroke

The optimal duration of therapy is unknown _____ up 6 months

Pioglitazone (PPAR y agonist)

- Improved all histological features
- Achieved resolution of NASH more often

- ► A meta-analysis of eight RCTs found pioglitazone is efficacious for:
- ► NASH resolution (OR: 3.22)
- Improvement of advanced fibrosis (OR: 3.15)
- Reversal of fibrosis (OR: 1.66)

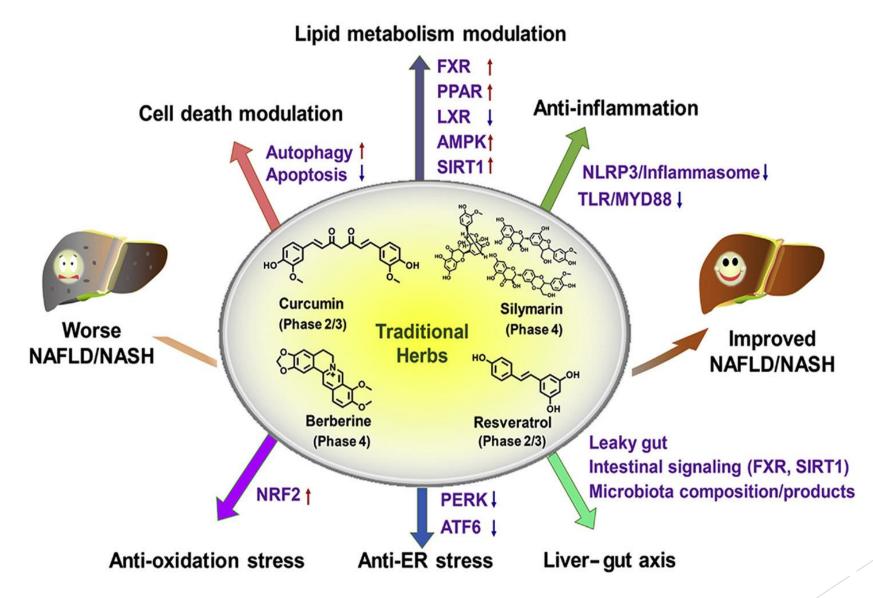
Two new drugs:

- 1- Sodium glucose co-transporter 2 (SGLT2) inhibitor
- ▶ Dapagliflozin
- ► Empagliflozin

- 2- GLP-1 analogue
- ► Liraglutide

3- Dipeptidyl peptidase-4 (DPP-4) inhibitor

Sitagliptin


Synbiotics and probiotics

- Improved hepatic steatosis
- Decreased hepatic enzymes
- ► No beneficial effects on fibrosis
- Probiotics marginally are effective

Prebiotics showed no effectiveness

Use of probiotics, prebiotics, and synbiotics in non-alcoholic fatty liver disease: A systematic review and meta-analysis. J Gastro Hepatol 2023 July.

Herbal Medicine

Silymarin:

- Improving fatty liver
- Improving insulin resistance
- Improving glucose and lipid metabolism
- ► In NASH, improves fibrosis and liver stiffness

• safe and well tolerated

Resveratrol:

- Improving liver enzymes
- Reduced hepatic steatosis
- Improved liver damages

► safe and well tolerated

► No long-term results

Treatment: surgery

Bariatric surgery:

- Reduces liver fat and is likely to reduce NASH progression
- Prospective data have shown an improvement in all histological lesions of NASH, including fibrosis

- ► A meta-analysis of 32 studies:
- ▶ Resolution of steatosis in 66%
- ► Fibrosis in 40% of patients
- ► Worsened in 12% of these patients

Liver transplantation:

- An accepted procedure in patients with NASH and end-stage liver disease. Overall survival is comparable to other indications, despite a higher cardiovascular mortality.
- Only for patients with NASH and liver failure and/or HCC

